SonarSource Rules
  • Products

    In-IDE

    Code Quality and Security in your IDE with SonarQube Ide

    IDE extension that lets you fix coding issues before they exist!

    Discover SonarQube for IDE

    SaaS

    Code Quality and Security in the cloud with SonarQube Cloud

    Setup is effortless and analysis is automatic for most languages

    Discover SonarQube Cloud

    Self-Hosted

    Code Quality and Security Self-Hosted with SonarQube Server

    Fast, accurate analysis; enterprise scalability

    Discover SonarQube Server
  • SecretsSecrets
  • ABAPABAP
  • AnsibleAnsible
  • ApexApex
  • AzureResourceManagerAzureResourceManager
  • CC
  • C#C#
  • C++C++
  • CloudFormationCloudFormation
  • COBOLCOBOL
  • CSSCSS
  • DartDart
  • DockerDocker
  • FlexFlex
  • GitHub ActionsGitHub Actions
  • GoGo
  • HTMLHTML
  • JavaJava
  • JavaScriptJavaScript
  • JSONJSON
  • JCLJCL
  • KotlinKotlin
  • KubernetesKubernetes
  • Objective CObjective C
  • PHPPHP
  • PL/IPL/I
  • PL/SQLPL/SQL
  • PythonPython
  • RPGRPG
  • RubyRuby
  • RustRust
  • ScalaScala
  • SwiftSwift
  • TerraformTerraform
  • TextText
  • TypeScriptTypeScript
  • T-SQLT-SQL
  • VB.NETVB.NET
  • VB6VB6
  • XMLXML
  • YAMLYAML
Go

Go static code analysis

Unique rules to find Bugs, Vulnerabilities, Security Hotspots, and Code Smells in your GO code

  • All rules 70
  • Vulnerability20
  • Bug7
  • Security Hotspot14
  • Code Smell29
 
Tags
    Impact
      Clean code attribute
        1. Hard-coded secrets are security-sensitive

           Security Hotspot
        2. Constructing arguments of system commands from user input is security-sensitive

           Security Hotspot
        3. Using publicly writable directories is security-sensitive

           Security Hotspot
        4. Using clear-text protocols is security-sensitive

           Security Hotspot
        5. Using weak hashing algorithms is security-sensitive

           Security Hotspot
        6. Delivering code in production with debug features activated is security-sensitive

           Security Hotspot
        7. Searching OS commands in PATH is security-sensitive

           Security Hotspot
        8. Creating cookies without the "HttpOnly" flag is security-sensitive

           Security Hotspot
        9. Setting loose POSIX file permissions is security-sensitive

           Security Hotspot
        10. Using pseudorandom number generators (PRNGs) is security-sensitive

           Security Hotspot
        11. Creating cookies without the "secure" flag is security-sensitive

           Security Hotspot
        12. Formatting SQL queries is security-sensitive

           Security Hotspot
        13. Hard-coded credentials are security-sensitive

           Security Hotspot
        14. Using hardcoded IP addresses is security-sensitive

           Security Hotspot

        Using weak hashing algorithms is security-sensitive

        responsibility - trustworthy
        security
        Security Hotspot
        • cwe

        Cryptographic hash algorithms such as MD2, MD4, MD5, MD6, HAVAL-128, DSA (which uses SHA-1), RIPEMD, RIPEMD-128, RIPEMD-160and SHA-1 are no longer considered secure, because it is possible to have collisions (little computational effort is enough to find two or more different inputs that produce the same hash).

        Message authentication code (MAC) algorithms such as HMAC-MD5 or HMAC-SHA1 use weak hash functions as building blocks. Although they are not all proven to be weak, they are considered legacy algorithms and should be avoided.

        Ask Yourself Whether

        The hashed value is used in a security context like:

        • User-password storage.
        • Security token generation (used to confirm e-mail when registering on a website, reset password, etc …​).
        • To compute some message integrity.

        There is a risk if you answered yes to any of those questions.

        Recommended Secure Coding Practices

        Safer alternatives, such as SHA-256, SHA-512, SHA-3 are recommended, and for password hashing, it’s even better to use algorithms that do not compute too "quickly", like bcrypt, scrypt, argon2 or pbkdf2 because it slows down brute force attacks.

        Sensitive Code Example

        import (
            "crypto"
            "fmt"
        )
        
        func calculateHash(data []byte) string {
            hashInstance := crypto.Hash.New(crypto.MD5) // Sensitive
            hashInstance.Write(data)
            hash := hashInstance.Sum(nil)
            return fmt.Sprintf("%x", hash)
        }
        
        import (
            "crypto/sha1"
            "fmt"
        )
        
        func calculateHash(data []byte) string {
            hash := sha1.Sum(data) // Sensitive
            return fmt.Sprintf("%x", hash)
        }
        

        Compliant Solution

        import (
            "crypto"
            "fmt"
        )
        
        func calculateHash(data []byte) string {
            hashInstance := crypto.Hash.New(crypto.SHA256) // Compliant
            hashInstance.Write(data)
            hash := hashInstance.Sum(nil)
            return fmt.Sprintf("%x", hash)
        }
        
        import (
            "crypto/sha512"
            "fmt"
        )
        
        func calculateHash(data []byte) string {
            hash := sha512.Sum512(data) // Compliant
            return fmt.Sprintf("%x", hash)
        }
        

        See

        • OWASP - Top 10 2021 Category A2 - Cryptographic Failures
        • OWASP - Top 10 2017 Category A3 - Sensitive Data Exposure
        • OWASP - Top 10 2017 Category A6 - Security Misconfiguration
        • CWE - CWE-1240 - Use of a Risky Cryptographic Primitive
          Available In:
        • SonarQube IdeCatch issues on the fly,
          in your IDE
        • SonarQube CloudDetect issues in your GitHub, Azure DevOps Services, Bitbucket Cloud, GitLab repositories
        • SonarQube ServerAnalyze code in your
          on-premise CI

        © 2008-2025 SonarSource SA. All rights reserved.

        Privacy Policy | Cookie Policy | Terms of Use